
Data Mining and Knowledge Discovery, 11, 1–20, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

GenMax: An Efficient Algorithm for Mining
Maximal Frequent Itemsets
KARAM GOUDA karam g@hotmail.com
Department of Mathematics, Faculty of Science, Benha, Egypt

MOHAMMED J. ZAKI zaki@cs.rpi.edu
Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract. We present GenMax, a backtrack search based algorithm for mining maximal frequent itemsets.
GenMax uses a number of optimizations to prune the search space. It uses a novel technique called progressive
focusing to perform maximality checking, and diffset propagation to perform fast frequency computation. Sys-
tematic experimental comparison with previous work indicates that different methods have varying strengths and
weaknesses based on dataset characteristics. We found GenMax to be a highly efficient method to mine the exact
set of maximal patterns.

Keywords: maximal itemsets, frequent itemsets, association rules, data mining, backtracking search

1. Introduction

Mining frequent itemsets is a fundamental and essential problem in many data mining
applications such as the discovery of association rules, strong rules, correlations, multi-
dimensional patterns, and many other important discovery tasks. The problem is formulated
as follows: Given a large data base of set of items transactions, find all frequent itemsets,
where a frequent itemset is one that occurs in at least a user-specified percentage of the
data base.

Many of the proposed itemset mining algorithms are a variant of Apriori (Agrawal
et al., 1996), which employs a bottom-up, breadth-first search that enumerates every single
frequent itemset. In many applications (especially in dense data) with long frequent patterns
enumerating all possible 2m−2 subsets of a m length pattern (m can easily be 30 or 40
or longer) is computationally unfeasible. Thus, there has been recent interest in mining
maximal frequent patterns in these “hard” dense databases. Another recent promising
direction is to mine only closed sets (Zaki, 2000; Zaki and Hsiao, 2002); a set is closed if it
has no superset with the same frequency. Nevertheless, for some of the dense datasets we
consider in this paper, even the set of all closed patterns would grow to be too large. The
only recourse is to mine the maximal patterns in such domains.

In this paper we introduce GenMax, a new algorithm that utilizes a backtracking search
for efficiently enumerating all maximal patterns. GenMax uses a number of optimizations
to quickly prune away a large portion of the subset search space. It uses a novel progressive
focusing technique to eliminate non-maximal itemsets, and uses diffset propagation for fast
frequency checking.

2 GOUDA AND ZAKI

We conduct an extensive experimental characterization of GenMax against state-of-the-
art maximal pattern mining methods like MaxMiner (Bayardo, 1998) and Mafia (Burdick
et al., 2001). We found that the three methods have varying performance depending on
the database characteristics (mainly the distribution of the maximal frequent patterns by
length). We present a systematic and realistic set of experiments showing under which
conditions a method is likely to perform well and under what conditions it does not perform
well. We conclude that while Mafia is good for mining a superset of all maximal patterns,
GenMax is the method of choice for enumerating the exact set of maximal patterns. We
further observe that there is a type of data, where MaxMiner delivers the best performance.

2. Preliminaries and related work

The problem of mining maximal frequent patterns can be formally stated as follows: Let
I = {i1, i2, . . . , im} be a set of m distinct items. Let D denote a database of transactions,
where each transaction has a unique identifier (tid) and contains a set of items. The set of
all tids is denoted T = {t1, t2, . . . , tn}. A set X ⊆ I is also called an itemset. An itemset
with k items is called a k-itemset. The set t (X) ⊆ T , consisting of all the transaction tids
which contain X as a subset, is called the tidset of X. For convenience we write an itemset
{A, C, W} as ACW, and its tidset {l, 3, 4, 5}as t(X) = 1345.

The support of an itemset X, denoted σ (X), is the number of transactions in which that
itemset occurs as a subset. Thus σ (X) = |t (X)|. An itemset is frequent if its support is
more than or equal to some threshold minimum support (min sup) value, i.e., if σ (X) >

min sup. We denote by Fk the set of frequent k-itemsets, and by FI the set of all frequent
itemsets. A frequent itemset is called maximal if it is not a subset of any other frequent
itemset. The set of all maximal frequent itemsets is denoted as MFI. Given a user specified
miti-sup value our goal is to efficiently enumerate all patterns in MFI.

Example 1. Consider our example database in figure 1. There are five different items,
I = {A, C, D, T, W } and six transactions T = {1, 2, 3, 4, 5, 6}. The figure also shows
the frequent and maximal k-itemsets at two different min sup values – 3(50%) and 2(30%)
respectively.

2.1. Backtracking search

GenMax uses backtracking search to enumerate the MFI. We first describe the backtracking
paradigm in the context of enumerating all frequent patterns. We will subsequently modify
this procedure to enumerate the MFI.

Backtracking algorithms are useful for many combinatorial problems where the solution
can be represented as a set I = {i0, i1, . . .}, where each ij is chosen from a finite possible
set, Pj. Initially I is empty; it is extended one item at a time, as the search space is traversed.
The length of I is the same as the depth of the corresponding node in the search tree. Given
a partial solution of length l, Il = {i0, i1,. . ., il−1}, the possible values for the next item
it comes from a subset Cl ⊆ Pl called the combine set. If y ∈ Pl – Cl, then nodes in the
subtree with root node Il = {i0, i1,. . ., il−1, y} will not be considered by the backtracking

GENMAX: AN EFFICIENT ALGORITHM 3

TID Items
Frequent itemsets Maximal itemsets

1

2

3

4

5

6

ACTW

ACDTW

ACTW

CDW

ACDW

CDT

A, C, D, T, W

ACDW, ACTW

Itemset

 Size

1

2

3

4

Frequent itemsets

AC, AT, AW,

CD, CT, CW,

DW, TW

ACT, ACW,

ATW,CTW,

CDW,

ACTW

Min_Sup = 3 trans Min_Sup = 2 trans

A, C, D, T, W

AC, AD, AT, AW,

CD, CT, CW, DT,

DW, TW

ACD, ACT, ACW,

ADW, ATW, CDT,

CDW, CTW

Min_Sup=3 trans

Maximal itemsets

Min_Sup = 2 trans

ACTW

CDW

ACDW, ACTW

CDT

Figure 1. Mining frequent itemsets.

algorithm. Since such subtrees have been pruned away from the original search space, the
determination of Cl is also called pruning.

Consider the backtracking algorithm for mining all frequent patterns, shown in figure 2.
The main loop tries extending Il with every item x in the current combine set Cl. The first
step is to compute Il+1, which is simply Il extended with x. The second step is to extract the
new possible set of extensions, Pl+1, which consists only of items y in Cl that follow x. The
third step is to create a new combine set for the next pass, consisting of valid extensions. An
extension is valid if the resulting itemset is frequent. The combine set, Cl+1, thus consists
of those items in the possible set that produce a frequent itemset when used to extend Il+1

Any item not in the combine set refers to a pruned subtree. The final step is to recursively
call the backtrack routine for each extension. As presented, the backtrack method performs
a depth-first traversal of the search space.

Example 2. Consider the full subset search space shown in figure 3. The backtrack search
space can be considerably smaller than the full space. For example, we start with I0 = Ø
and C0 = F1 = {A, C, D, T, W}. At level 1, each item in C0 is added to I0 in turn. For
example, A is added to obtain I1 = {A}. The possible set for A, Pl = {C, D, T, W} consists
of all items that follow A in C0 However, from figure 1, we find that only AC, AT, and AW
are frequent (at min sup = 3), giving C1 = {C, T, W}. Thus the subtree corresponding to
the node AD has been pruned.

4 GOUDA AND ZAKI

Figure 2. Backtrack algorithm for mining FI.

2.2. Related work

Methods for finding the maximal elements include All-MFS (Gunopulos et al., 2003), which
works by iteratively attempting to extend a working pattern until failure. A randomized
version of the algorithm that uses vertical bit-vectors was studied, but it does not guarantee
every maximal pattern will be returned. The Pincer-Search (Lin and Kedem, 1998) algorithm
uses horizontal data format. It not only constructs the candidates in a bottom-up manner like
Apriori, but also starts a top-down search at the same time, maintaining a candidate set of
maximal patterns. This can help in reducing the number of database scans, by eliminating
non-maximal sets early. The maximal candidate set is a superset of the maximal patterns,
and in general, the overhead of maintaining it can be very high. In contrast GenMax
maintains only the current known maximal patterns for pruning.

MaxMiner (Bayardo, 1998) is another algorithm for finding the maximal elements.
It uses efficient pruning techniques to quickly narrow the search. MaxMiner employs a
breadth-first traversal of the search space; it reduces database scanning by employing a
lookahead pruning strategy, i.e., if a node with all its extensions can determined to be
frequent, there is no need to further process that node. It also employs item (re)ordering
heuristic to increase the effectiveness of superset-frequency pruning. Since MaxMiner uses
the original horizontal database format, it can perform the same number of passes over a
database as Apriori does.

DepthProject (Agrawal et al., 2000) finds long itemsets using a depth first search of a
lexicographic tree of itemsets, and uses a counting method based on transaction projections

GENMAX: AN EFFICIENT ALGORITHM 5

A{C,T,W}

AC{T,W} AD{T,W} AT{W} AW

ACD{T,W} ACT{W} ACW

ACDT{W} ACDW ACTW

ADT ADW ATW

C{D,T,W}

CD{T,W} CT{W} CW

CDT{W}

CDTW

CDW

DT{W} DW TW

CTW DTW

D{TW} T{W} W

{}{A,C,D,T,W}

ADTW

ACDTW

Level

0

1

2

3

4

5

Figure 3. Subset/Backtrack Search Tree (min sup = 3): Circles indicate maximal sets and the infrequent sets
have been crossed out. Due to the downward closure property of support (i.e., all subsets of a frequent itemset
must be frequent) the frequent itemsets form a border (shown with the bold line), such that all frequent itemsets lie
above the border, while all infrequent itemsets lie below it. Since MFI determine the border, it is straightforward
to obtain FI in a single database scan of MFI is known.

along its branches. This projection is equivalent to a horizontal version of the tidsets at
a given node in the search tree. DepthProject also uses the look-ahead pruning method
with item reordering. It returns a superset of the MFI and would require post-pruning
to eliminate non-maximal patterns. FPgrowth (Han et al., 2000) uses the novel frequent
pattern tree (FP-tree) structure, which is a compressed representation of all the transactions
in the database. It uses a recursive divide-and-conquer and database projection approach to
mine long patterns. Nevertheless, since it enumerates all frequent patterns it is impractical
when pattern length is long.

Mafia (Burdick et al., 2001) is the most recent method for mining the MFI. Mafia uses
three pruning strategies to remove non-maximal sets. The first is the look-ahead pruning
first used in MaxMiner. The second is to check if a new set is subsumed by an existing
maximal set. The last technique checks if t(X) ⊆ t(Y). If so X is considered together with Y
for extension. Mafia uses vertical bit-vector data format, and compression and projection of
bitmaps to improve performance. Mafia mines a superset of the MFI, and requires a post-
pruning step to eliminate non-maximal patterns. In contrast GenMax integrates pruning
with mining and returns the exact MFI.

6 GOUDA AND ZAKI

Recently there has been a surge of interest in experimentally comparing algorithms for
frequent itemset mining, including the problem of computing the MFI. We refer the reader to
Goethals and Zaki (2003) for more details on the Frequent Itemset Mining Implementations
(FIMI) workshop. The FIMI web-page (http://fimi.cs.helsinki.fi/) also contains the open
source implementations of many new MFI algorithms, as well as new datasets that can be
used for testing.

3. GenMax for efficient MFI mining

There are two main ingredients to develop an efficient MFI algorithm. The first is the set
of techniques used to remove entire branches of the search space, and the second is the
representation used to perform fast frequency computations. We will describe below how
GenMax extends the basic backtracking routine for FI, and then the progressive focusing
and diffset propagation techniques it uses for fast maximality and frequency checking.

The basic MFI enumeration code used in GenMax is a straightforward extension of Fl-
backtrack. The main addition is the superset checking to eliminate non-maximal itemsets,
as shown in figure 4. In addition to the main steps in FI enumeration, the new code adds a
step (line 4) after the construction of the possible set to check if Il+1 ∪ Pl+1 is subsumed
by an existing maximal set. If so, the current and all subsequent items in Cl can be pruned
away. After creating the new combine set, if it is empty and Il+1 is not a subset of any
maximal pattern, it is added to the MFI. If the combine set is non-empty a recursive call is
made to check further extensions.

Figure 4. Backtrack algorithm for mining MFI(∗indicates a new line not in Fl-backtrack).

GENMAX: AN EFFICIENT ALGORITHM 7

3.1. Superset checking techniques

Checking to see if the given itemset Il+1 combined with the possible set Pl+1 is subsumed
by another maximal set was also proposed in Mafia (Burdick et al., 2001) under the name
HUTMFI. Further pruning is possible if one can determine based just on support of the
combine sets if Il+1 ∪ Pl+1 will be guaranteed to be frequent. In this case also one can avoid
processing any more branches. This method was first introduced in MaxMiner (Bayardo,
1998), and was also used in Mafia under the name FHUT.

3.2. Reordering the combine set

Two general principles for efficient searching using backtracking are that: (1) It is more
efficient to make the next choice of a subtree (branch) to explore to be the one whose combine
set has the fewest items. This usually results in good performance, since it minimizes the
number of frequency computations in Fl-combine. (2) If we are able to remove a node as
early as possible from the backtracking search tree we effectively prune many branches
from consideration.

Reordering the elements in the current combine set to achieve the two goals is a very
effective means of cutting down the search space. The first heuristic is to reorder the
combine set in increasing order of support. This is likely to produce small combine sets
in the next level, since the items with lower frequency are less likely to produce frequent
itemsets at the next level. This heuristic was first used in MaxMiner, and has been used in
other methods since then (Agrawal et al., 2000; Burdick et al., 2001; Zaki and Hsiao, 2002).
At each level of backtracking search, GenMax reorders the combine set in increasing order
of support (this is indicated in figures 2, 7, and 8).

In addition to sorting the initial combine set at level 0 in increasing order of support,
GenMax uses another reordering heuristic based on a simple lemma.

Lemma 1. Let IF(x) = {y : y ∈ F1; xy is not frequent}, denote the set of infrequent 2-itemsets
that contain an item x ∈ F1, and let M(x) be the longest maximal pattern containing x. Then
|M (x)| ≤ |F1| − |I F (x)|.

Proof: Assume there exists a maximal pattern containing x with |M (x)| > |F1|− |F I (x)|.
This implies |M (x)| + |I F (x)| > |F1|. But this is a contradiction since IF(x) and M(x) are
disjoint, M (x) ⊆ F1 and I F (x) ⊆ F1. Their combined size thus cannot exceed |F1|.

Assuming F2 has been computed, reordering C0 in decreasing order of IF(x) (with x ∈
C0) ensures that the smallest combine sets will be processed at the initial levels of the tree,
which result in smaller backtracking search trees. GenMax thus initially sorts the items in
decreasing order of IF(x) and in increasing order of support. Then at each subsequent level,
GenMax keeps the combine set in increasing order of support.

Example 3. For our database in figure 1 with min sup = 2, IF(x) is the same of all items x
∈ F1, and the sorted order (on support) is A, D, T, W, C. Figure 5 shows the backtracking

8 GOUDA AND ZAKI

A{D,T,W,C}

AD{T,W,C} AT{W,C} AW{C}

ADT{W,C} ADW{C} ADC ATW{C} AWC

D{T,W,C}

DT{W,C}

DTW{C} DTC

DW{C}

DWC

(a)

AC

(b)

DC

ADWC ATWC

ATC

T{W,C}

TWC

TW{C} TC

(c)

Figure 5. Backtracking trees of Example 2.

search trees for maximal itemsets containing prefix items A and D. Under the search tree
for A, figure 5(a), we try to extend the partial solution AD by adding to it item T from its
combine set. We try another item W after itemset ADT turns out to be infrequent, and so on.
Since GenMax uses itemsets which are found earlier in the search to prune the combine sets
of later branches, after finding the maximal set ADWC, GenMax skips ADC. After finding
ATWC all the remaining nodes with prefix A are pruned, and so on. The pruned branches
are shown with dashed arrows, indicating that a large part of the search tree is pruned away.

Theorem 1 (Correctness). MFI-backtrack returns all and only the maximal frequent
itemsets in the given database.

Proof: The Fl-backtrack procedure considers every possible frequent extension Il ∪ {x} of
the current itemset Il. It thus generates all frequent itemsets. The MFI-backtrack procedure
removes additional branches only if the current itemset along with its entire possible set (Il+1

∪ Pl+1) is subsumed by some maximal frequent itemset, since in this case no extension
of Il+1 can possibly be maximal. Finally, a set is added to the maximal collection only
if it is not a subset of any other maximal frequent itemset. The proof of correctness of
GenMax thus follows from the correctness of the method, Fl-backtrack, which enumerates
all frequent itemsets, combined with the fact that only non-maximal branches are eliminated
from search.

3.3. Optimizing GenMax

3.3.1. Superset checking optimization. The main efficiency of GenMax stems from the
fact that it eliminates branches that are subsumed by an already mined maximal pattern.

GENMAX: AN EFFICIENT ALGORITHM 9

Were it not for this pruning, GenMax would essentially default to a depth-first exploration
of the search tree. Before creating the combine set for the next pass, in line 4 in figure 4,
GenMax check if Il+1 ∪ Pl+1 is contained within a previously found maximal set. If yes,
then the entire subtree rooted at Il+1 and including the elements of the possible set are
pruned. If no, then a new extension is required. Another superset check is required at line
8, when Il+1 has no frequent extension, i.e., when the combine set Cl+1 is empty. Even
though Il+1 is a leaf node with no extensions it may be subsumed by some maximal set,
and this case is not caught by the check in line 4 above.

The major challenge in the design of GenMax is how to perform this subset checking in
the current set of maximal patterns in an efficient manner. If we were to naively implement
and perform this search two times on an ever expanding set of maximal patterns MFI, and
during each recursive call of backtracking, we would be spending a prohibitive amount of
time just performing subset checks. Each search would take O(|MFI|) time in the worst
case, where MFI is the current, growing set of maximal patterns. Note that some of the best
algorithms for dynamic subset testing run in amortized time O

(√
s log s

)
per operation in

a sequence of s operations (Yellin, 1994) (for us s = O(MFI)). In dense domain we have
thousands to millions of maximal frequent itemsets, and the number of subset checking
operations performed would be at least that much. Can we do better?

The answer is, yes! Firstly, we observe that the two subset checks (one on line 4 and the
other on line 8) can be easily reduced to only one check. Since Il+1 ∪ Pl+1 is a superset of
Il+1, in our implementation we do superset check only for Il+1 ∪ Pl+1 While testing this
set, we store the maximum position, say p, at which an item in Il+1 ∪ Pl+1 is not found in a
maximal set M ∈ MFI. In other words, all items before p are subsumed by some maximal
set. For the superset test for Il+1 we check if |Il+1| < p. If yes, Il+1 is non-maximal. If no,
we add it to MFI.

The second observation is that performing superset checking during each recursive call
can be redundant. For example, suppose that the cardinality of the possible set Pl+1 is m.
Then potentially, MFI-backtrack makes m redundant subset checks, if the current MFI
has not changed during these m consecutive calls. To avoid such redundancy, a simple
check status flag is used. If the flag is false, no superset check is performed. Before each
recursive call the flag is false; it becomes true whenever Cl+1 is empty, which indicates that
we have reached a leaf, and have to backtrack.

The O
(√

s log s
)

time bounds reported in Yellin (1994) for dynamic subset testing do
not assume anything about the sequence of operations performed. In contrast, we have full
knowledge of how GenMax generates maximal sets; we use this observation to substantially
speed up the subset checking process. The main idea is to progressively narrow down the
maximal itemsets of interest as recursive calls are made. In other words, we construct for
each invocation of MFI-backtrack a list of local maximal frequent itemsets, LMFIl. This
list contains the maximal sets that can potentially be supersets of candidates that are to be
generated from the itemset Il The only such maximal sets are those that contain all items
in Il. This way, instead of checking if Il+1 ∪ Pl+1 is contained in the full current MFI, we
check only in LMFIl – the local set of relevant maximal itemsets. This technique, that we
call progressive focusing, is extremely powerful in narrowing the search to only the most
relevant maximal itemsets, making superset checking practical on dense datasets.

10 GOUDA AND ZAKI

Figure 6. Mining MFI with progressive focusing (∗indicates a new line not in MFI-backtrack).

Figure 6 shows the pseudo-code for GenMax that incorporates this optimization (the
code for the first two optimizations is not shown to avoid clutter). Before each invocation of
LMFI-backtrack a new LMFIl+1 is created, consisting of those maximal sets in the current
LMFIl that contain the item x (see line 10). Any new maximal itemsets from a recursive call
are incorporated in the current LMFIl at line 12. Note that the correctness of the algorithm
is not affected by this optimization, since progressive focusing only removes those itemsets
that cannot subsume the itemsets in line 4 and 9. Thus Theorem 1 still holds.

3.3.2. Frequency testing optimization. So far GenMax, as described, is independent of
the data format used. The techniques can be integrated into any of the existing methods for
mining maximal patterns. We now present some data format specific optimizations for fast
frequency computations.

GenMax uses a vertical database format, where we have available for each item its tidset,
the set of all transaction tids where it occurs. The vertical representation has the following
major advantages over the horizontal layout: Firstly, computing the support of itemsets is
simpler and faster with the vertical layout since it involves only the intersections of tidsets
(or compressed bit-vectors if the vertical format is stored as bitmaps (Burdick et al., 2001)).
Secondly, with the vertical layout, there is an automatic “reduction” of the database before
each scan in that only those itemsets that are relevant to the following scan of the mining
process are accessed from disk. Thirdly, the vertical format is more versatile in supporting
various search strategies, including breadth-first, depth-first or some other hybrid search.

GENMAX: AN EFFICIENT ALGORITHM 11

Figure 7. Fl-combine using tidset intersections (∗indicates a new line not in Fl-combine).

Let’s consider how the Fl-combine (see figure 2) routine works, where the frequency of
an extension is tested. Each item x in Cl actually represents the itemset Il ∪ {x} and stores
the associated tidset for the itemset Il ∪ {x}. For the initial invocation, since Il is empty, the
tidset for each item x in Cl is identical to the tidset, t(x), of item x. Before line 3 is called in
FI-combine, we intersect the tidset of the element Il+1 (i.e., t(Il ∪ {x})) with the tidset of
element y (i.e., t(Il ∪ {y})). If the cardinality of the resulting intersection is above minimum
support, the extension with y is frequent, and y′ the new intersection result, is added to the
combine set C for the next level. C is kept in increasing order of support of its elements.
Figure 7 shows the pseudo-code for Fl-tidset-combine using this tidset intersection based
support counting.

In Charm (Zaki and Hsiao, 2002) we first introduced two new properties of itemset-tidset
pairs which can be used to further increase the performance. Consider the items x and y
in Cl. If during intersection in line 4 in figure 7, we discover that t(x) – or equivalently
t(Il+1)—is a subset of or equal to t(y), then we do not add y′ to the combine set, since in
this case, x always occurs along with y. Instead of adding y′ to the combine set, we add it to
Il+1. This optimization was also used in Mafia (Burdick et al., 2001) under the name PEP.

3.3.3. Diffsets propagation. Despite the many advantages of the vertical format, when the
tidset cardinality gets very large (e.g., for very frequent items) the intersection time starts
to become inordinately large. Furthermore, the size of intermediate tidsets generated for
frequent patterns can also become very large to fit into main memory. GenMax uses a new
format called diffsets (Zaki and Gouda, 2003) for fast frequency testing.

The main idea of diffsets is to avoid storing the entire tidset of each element in the
combine set. Instead we keep track of only the differences between the tidset of itemset Il

and the tidset of an element x in the combine set (which actually denotes Il ∪ {x}). These
differences in tids are stored in what we call the diffset, which is a difference of two tidsets
at the root level or a difference of two diffsets at later levels. Furthermore, these differences
are propagated all the way from a node to its children starting from the root. In an extensive
study (Zaki and Gouda, 2003), we showed that diffsets are very short compared to their

12 GOUDA AND ZAKI

Figure 8. Fl-combine: diffset propagation.

tidsets counterparts, and are highly effective in improving the running time of vertical
methods.

We describe next how they are used in GenMax, with the help of an example. At level
0, we have available the tidsets for each item in F1. When we invoke Fl-combine at this
level, we compute the diffset of y′, denoted as d(y′) instead of computing the tidset of y as
shown in line 4 in figure 7. That is d

(
y′) = t (x) − t (y). The support of y′ is now given

as σ
(
y′) = σ (x) − ∣∣d

(
y′)∣∣. At subsequent levels, we have available the diffsets for each

element in the combine list. In this case d
(
y′) = d (y) − d (x), but the support is still given

as σ
(
y′) = σ (x) − ∣∣d

(
y′)∣∣. Figure 8 shows the pseudo-code for computing the combine

sets using diffsets.

Example 4. Suppose, that we have the itemset ADT; we show how to get its support using
the diffset propagation technique. In GenMax we start with item A, and extend it with item
D. Now in order to find the support of AD we first find the diffset for AD, denoted d(AD)
= t(A) − t(D) and then calculate its support as a σ (AD) = σ (A) − |d (AD)|. At the next
level, we need to compute the diffset for ADT using the diffsets for AD and AT, where Il =
{A} and Cl, = {D,T}. The diffset of itemset ADT is given as d(ADT) = d(AT) − d(AD), and
its support is given as σ (AD) − |d (ADT)| (Zaki and Gouda, 2003). Since longer patterns
are always formed by combining its lexicographic first two subsets, which share the same
prefix, the method is guaranteed to be correct.

3.4. Final GenMax algorithm

The complete GenMax algorithm is shown in figure 9, which ties in all the optimizations
mentioned above. GenMax assumes that the input dataset is in the vertical tidset format.
First GenMax computes the set of frequent items and the frequent 2-itemsets, using a
vertical-to-horizontal recovery method (Zaki and Gouda, 2003). This information is used
to reorder the items in the initial combine list to minimize the search tree size that is
generated. GenMax uses the progressive focusing technique of LMFI-backtrack, combined

GENMAX: AN EFFICIENT ALGORITHM 13

Figure 9. The GenMax algorithm.

Figure 10. Database characteristics: I denotes the number of items, AL the average length of a record, R the
number of records, and MPL the maximum pattern length at the given min sup.

with diffset propagation of Fl-diffset-combine to produce the exact set of all maximal
frequent itemsets, MFI.

4. Experimental results

Past work has demonstrated that DepthProject (Agrawal et al., 2000) is faster than
MaxMiner (Bayardo, 1998), and the latest paper shows that Mafia (Burdick et al., 2001)
consistently beats DepthProject. In our experimental study below, we retain MaxMiner
for baseline comparison. At the same time, MaxMiner shows good performance on some
datasets, which were not used in previous studies. We use Mafia as the current state-of-the-
art method and show how GenMax compares against it. However, Mafia does not guarantee
an exact answer; it returns only a superset of MFI. We thus also compare GenMax with
an augmented version of Mafia, called MafiaPP, that returns the exact MFI.

All our experiments were performed on a 400 MHz Pentium PC with 256 MB of
memory, running RedHat Linux 6.0. For comparison we used the original source or object
code for MaxMiner (Bayardo, 1998) and MAFIA (Burdick et al., 2001), provided to us
by their authors. Timings in the figures are based on total wall-clock time, and include
all preprocessing costs (such as horizontal-to-vertical conversion in GenMax and Mafia).

14 GOUDA AND ZAKI

The times reported also include the program output. We believe our setup reflects realistic
testing conditions (as opposed to some previous studies which report only the CPU time or
may not include output cost).

4.1. Benchmark datasets

We chose several real and synthetic datasets for testing the performance of the the algo-
rithms, shown in Table 10. The real datasets have been used previously in the evaluation
of maximal patterns (Bayardo, 1998; Agrawal et al., 2000; Burdick et al., 2001). Typically,
these real datasets are very dense, i.e., they produce many long frequent itemsets even for
high values of support. The table shows the length of the longest maximal pattern (at the
lowest minimum support used in our experiments) for the different datasets. For example on
pumsb*, the longest pattern was of length 43 (any method that mines all frequent patterns
will be impractical for such long patterns). We also chose two synthetic datasets, which
have been used as benchmarks for testing methods that mine all frequent patterns. Previous
maximal set mining algorithms have not been tested on these datasets, which are sparser
compared to the real sets. All these datasets are publicly available from IBM Almaden
(www.almaden.ibm.com/cs/quest/demos.html).

While conducting experiments comparing the 3 different algorithms, we observed that
the performance can vary significantly depending on the dataset characteristics. We were
able to classify our benchmark datasets into four classes based on the distribution of the
maximal frequent patterns.

4.2. Type I datasets: Chess and pumsb

Figure 11 shows the performance of the three algorithms on chess and pumsb. These
Type I datasets are characterized by a symmetric distribution of the maximal frequent
patterns (leftmost graph). Looking at the mean of the curve, we can observe that for these
datasets most of the maximal patterns are relatively short (average length 11 for chess
and 10 for pumsb). The MFI cardinality figures on top center and right, show that for
the support values shown, the MFI is 2 orders of magnitude smaller than all frequent
itemsets.

Compare the total execution time for the different algorithms on these datasets (center
and rightmost graphs). We use two different variants of Mafia. The first one, labeled
Mafia, does not return the exact maximal frequent set, rather it returns a superset of all
maximal patterns. The second variant, labeled MafiaPP, uses an option to eliminate non-
maximal sets in a post-processing (PP) step. Both GenMax and MaxMiner return the exact
MFI.

On chess we find that Mafia (without PP) is the fastest if one is willing to live with a
superset of the MFI. Mafia is about 10 times faster than MaxMiner. However, notice how
the running time of MafiaPP grows if one tries to find the exact MFI in a post-pruning step.
GenMax, though slower than Mafia is significantly faster than MafiaPP and is about 5 times
faster than MaxMiner. All methods, except MafiaPP, show an exponential growth in running
time (since the y-axis is in log-scale, this appears linear) faithfully following the growth of

GENMAX: AN EFFICIENT ALGORITHM 15

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25

F
re

qu
en

cy

Length

maximal itemset distribution

chess(40%)

pumsb(60%)

100

1000

10000

100000

1e+06

1e+07

1e+08

2025303540455055606570

S
et

 C
ar

di
na

lit
y

Minimum Support (%)

Cardinality

chess-freq

chess-max

10

100

1000

10000

100000

1e+06

6065707580859095100

S
et

 C
ar

di
na

lit
y

Minimum Support (%)

Cardinality

pumsb-freq

pumsb-max

0.1

10

1

100

1000

10000

2025303540455055606570

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

chess

MaxMiner

MafiaPP

GenMax

Mafia

1

10

100

1000

10000

100000

405060708090100

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

pumsb

MaxMiner

MafiaPP

GenMax

Mafia

Figure 11. Type I datasets (chess and pumsb).

MFI with lowering minimum support, as shown in the top center and right figures. MafiaPP
shows super-exponential growth and suffers from an approximately O(|MFI|2) overhead
in pruning non-maximal sets and thus becomes impractical when MFI becomes too large,
i.e., at low supports.

On pumsb, we find that GenMax is the fastest, having a slight edge over Mafia. It is
about 2 times faster than MafiaPP. We observed that the post-pruning routine in MafiaPP
works well till around O(104) maximal itemsets. Since at 60% min sup we had around
that many sets, the overhead of post-processing was not significant. With lower support the
post-pruning cost becomes significant, so much so that we could not run MafiaPP beyond
50% minimum support. MaxMiner is significantly slower on pumsb; a factor of 10 times
slower then both GenMax and Mafia.

Type I results substantiate the claim that GenMax is an highly efficient method to
mine the exact MFI. It is as fast as Mafia on pumsb and within a factor of 2 on
chess. Mafia, on the other hand is very effective in mining a superset of the MFI. Post-
pruning, in general, is not a good idea, and GenMax beats MafiaPP with a wide margin

16 GOUDA AND ZAKI

(over 100 times better in some cases, e.g., chess at 20%). On Type I data MaxMiner is
noncompetitive.

4.3. Type II datasets: Connect and pumsb∗

Type II datasets, as shown in figure 12 are characterized by a left-skewed distribution of
the maximal frequent patterns, i.e., there is a relatively gradual increase with a sharp drop
in the number of maximal patterns. The mean pattern length is also longer than in Type
I datasets; it is around 16 or 17. The MFI cardinality is also drastically smaller than FI
cardinality; by a factor of 104 or more (in contrast, for Type I data, the reduction was only
102).

The main performance trend for both Type II datasets is that Mafia is the best till the
support is very low, at which point there is a cross-over and GenMax outperforms Mafia. The
reason is most likely due to the benefits of progressive focusing at low support thresholds.
MafiaPP continues to be favorable for higher supports, but once again beyond a point post-
pruning costs start to dominate. MafiaPP could not be run beyond the plotted points in any

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40

F
re

qu
en

cy

Length

maximal itemset distribution

connect(20%)

pumsb*(7.5%)

10

100

1000

10000

100000

1e+06

1e+07

1e+08

102030405060708090100

S
et

 C
ar

di
na

lit
y

Minimum Support (%)

Cardinality

connect-freq

connect-max

10

100

1000

10000

100000

1e+06

1e+07

5101520253035404550

S
et

 C
ar

di
na

lit
y

Minimum Support (%)

Cardinality

pumsb*-freq

pumsb*-max

1

10

100

1000

10000

0102030405060708090100

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

connect

MaxMiner

MafiaPP

GenMax

Mafia

1

10

100

1000

10000

05101520253035404550

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

pumsb*

MaxMiner

MafiaPP

GenMax

Mafia

Figure 12. Type II datasets (connect and pumsb∗).

GENMAX: AN EFFICIENT ALGORITHM 17

reasonable amount of time. MaxMiner remains noncompetitive (about 10 times slower).
The initial start-up time for Mafia for creating the bit-vectors is responsible for the high
offset at 50% support on pumsb∗. GenMax appears to exhibit a more graceful increase in
running time than Mafia.

4.4. Type III datasets: T10I4 and T40I10

As depicted in figure 13, Type III datasets—the two synthetic ones—are characterized by
an exponentially decaying distribution of the maximal frequent patterns. Except for a few
maximal sets of size one, the vast majority of maximal patterns are of length two! After
that the number of longer patterns drops exponentially. The mean pattern length is very
short compared to Type I or Type II datasets; it is around 4–6. MFI cardinality is not much
smaller than the cardinality of all frequent patterns. The difference is only a factor of 10
compared to a factor of 100 for Type I and a factor of 10,000 for Type II.

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14 16 18

F
re

qu
en

cy

Length

maximal itemset distribution

T10(0.025%)

T40(0.7125%)

1000

10000

100000

1e+06

00.020.040.060.080.10.120.140.16

S
et

 C
ar

di
na

lit
y

Minimum Support (%)

Cardinality

T10-freq

T10-max

1000

10000

100000

1e+06

1e+07

00.20.40.60.811.21.41.61.82

S
et

 C
ar

di
na

lit
y

Minimum Support (%)

Cardinality

T40-freq

T40-max

1

10

100

1000

10000

00.020.040.060.080.10.120.140.16

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

T10I4D100K

MaxMiner

MafiaPP

GenMax

Mafia

10

100

1000

10000

0.20.40.60.811.21.41.61.82

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

T40I10D100K

MaxMiner

MafiaPP

GenMax

Mafia

Figure 13. Type III datasets (T10 and T40).

18 GOUDA AND ZAKI

Comparing the running times we observe that MaxMiner is the best method for this
type of data. The breadth-first or level-wise search strategy used in MaxMiner is ideal for
very bushy search trees, and when the average maximal pattern length is small. Horizontal
methods are better equipped to cope with the quadratic blowup in the number of frequent
2-itemsets since one can use array based counting to get their frequency. On the other
hand vertical methods spend much time in performing intersections on long item tidsets or
bit-vectors. GenMax gets around this problem by using the horizontal format for computing
frequent 2-itemsets (denoted F2), but it still has to spend time performing O(|F2|) pairwise
tidset intersections.

Mafia on the other hand performs O(|F1|2) intersections, where F1 is the set of frequent
items. The overhead cost is enough to render Mafia noncompetitive on Type III data. On
T10 Mafia can be 20 or more times slower than MaxMiner. GenMax exhibits relatively
good performance, and it is about 10 times better than Mafia and 2 to 3 times worse than
MaxMiner. On T40, the gap between GenMax/Mafia and MaxMiner is smaller since there
are longer maximal patterns. MaxMiner is 2 times better than GenMax and 5 times better
than Mafia. Since the MFI cardinality is not too large MafiaPP has almost the time as Mafia
for high supports. Once again MafiaPP could not be run for lower support values. It is clear
that, in general, post-pruning is not a good idea; the overhead is too much to cope with.

4.5. Type IV dataset: Mushroom

Mushroom exhibits a very unique MFI distribution. Plotting MFI cardinality by length,
we observe in figure 14 that the number of maximal patterns remains small until length 19.
Then there is a sudden explosion of maximal patterns at length 20, followed by another
sharp drop at length 21. The vast majority of maximal itemsets are of length 20. The average
transaction length for mushroom is 23 (see Figure 10), thus a maximal pattern spans almost
a full transaction. The total MFI cardinality is about 1000 times smaller than all frequent
itemsets.

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

F
re

qu
en

cy

Length

maximal itemset distribution

mushroom(0.1%)
mushroom(0.075%)

100

1000

10000

100000

1e+06

1e+07

1e+08

02468101214161820

S
et

 C
ar

di
na

lit
y

Minimum Support (%)

Cardinality

mushroom-freq
mushroom-max

0.1

1

10

100

0.010.1110

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

mushroom

MaxMiner

MafiaPP

GenMax

GenMaxí

Mafia

Figure 14. Type IV dataset (mushroom).

GENMAX: AN EFFICIENT ALGORITHM 19

On Type IV data, Mafia performs the best. MafiaPP and MaxMiner are comparable at
lower supports. This data is the worst for GenMax, which is 2 times slower than MaxMiner
and 4 times slower than Mafia. In Type IV data, a smaller itemset is part of many maximal
itemsets (of length 20 in case of mushroom); this renders our progressive focusing technique
less effective. To perform maximality checking one has to test against a large set of maximal
itemsets; we found that GenMax spends half its time in maximality checking. Recognizing
this helped us improve the progressive focusing using an optimized intersection-based
method (as opposed to the original list based approach). This variant, labeled GenMax’,
was able to cut down the execution time by half. GenMax’ runs in the same time as
MaxMiner and MafiaPP.

5. Conclusions

This is one of the first papers to comprehensively compare recent maximal pattern mining
algorithms under realistic assumptions. Our timings are based on wall-clock time, we
included all pre-processing costs, and also cost of outputting all the maximal itemsets
(written to a file). We were able to distinguish four different types of MFI distributions in
our benchmark testbed. We believe these distributions to be fairly representative of what
one might see in practice, since they span both real and synthetic datasets. Type I is a normal
MFI distribution with not too long maximal patterns, Type II is a left-skewed distributions,
with longer maximal patterns, Type III is an exponential decay distribution, with extremely
short maximal patterns, and finally Type IV is an extreme left-skewed distribution, with
very large average maximal pattern length.

We noted that different algorithms perform well under different distributions. We con-
clude that among the current methods, MaxMiner is the best for mining Type III distribu-
tions. On the remaining types, Mafia is the best method if one is satisfied with a superset
of the MFI. For very low supports on Type II data, Mafia loses its edge. Post-pruning
non-maximal patterns typically has high overhead. It works only for high support values,
and MafiaPP cannot be run beyond a certain minimum support value. GenMax integrates
pruning of non-maximal itemsets in the process of mining using the novel progressive fo-
cusing technique, along with other optimizations for superset checking; among the methods
tested GenMax is the best method for mining the exact MFI.

Our work opens up some important avenues of future work. The IBM synthetic dataset
generator appears to be too restrictive. It produces Type III MFI distributions. We plan to
develop a new generator that the users can use to produce various kinds of MFI distributions.
This will help provide a common testbed against which new algorithms can be benchmarked.
Knowing the conditions under which a method works well or does not work well is an
important step in developing new solutions. In contrast to previous studies we were able to
isolate these conditions for the different algorithms. For example, we were able to improve
the performance of GenMax’ to match MaxMiner on mushroom dataset. Another obvious
avenue of improving GenMax and Mafia is to efficiently handle Type III data. It seems
possible to combine the strengths of the three methods into a single hybrid algorithm
that uses the horizontal format when required and uses bit-vectors/diffsets or perhaps bit-

20 GOUDA AND ZAKI

vectors of diffsets in other cases or in combination. We plan to investigate this in the
future.

Acknowledgments

We would like to thank Roberto Bayardo for providing us the MaxMiner algorithm and
Johannes Gehrke for the MAFIA algorithm. This work was supported in part by NSF
CAREER Award IIS-0092978, DOE Career Award DE-FG02-02ER25538, and NSF grants
EIA-0103708 and EMT-0432098.

References

Agrawal, R., Aggarwal, C., and Prasad, V. 2000. Depth first generation of long patterns. In 7th Int’l Conference
on Knowledge Discovery and Data Mining, pp. 108–118.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A.I. 1996. Fast discovery of association rules.
In Advances in Knowledge Discovery and Data Mining, Fayyad, U. et al. (Eds.), Menlo Park, CA: AAAI Press,
pp. 307–328.

Bayardo, R.J. 1998. Efficiently mining long patterns from databases. In ACM SIGMOD Conf. on Management
of Data, pp. 85–93.

Burdick, D., Calimlim, M., and Gehrke, J. 2001. MAFIA: A maximal frequent itemset algorithm for transactional
databases. In IEEE Intl. Conf. on Data Engineering, pp. 443–452.

Goethals, B., and Zaki, M. 2003. Advances in frequent itemset mining implementations: Report on FIMI’03.
SIGKDD Explorations, 6(1):109–117.

Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., and Sharma, R. 2003. Discovering all most
specific sentences. ACM Transactions on Database Systems, 28(2):140–174.

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In ACM SIGMOD Conf.
on Management of Data, pp. 1–12.

Lin, D.-L., and Kedem, Z.M. 1998. Pincer-search: A new algorithm for discovering the maximum frequent set.
In 6th Intl. Conf. on Extending Database Technology, pp. 105–119.

Yellin, D. 1994. An algorithm for dynamic subset and intersection testing. Theoretical Computer Science, 129:397–
406.

Zaki, M.J. 2000. Generating non-redundant association rules. In 6th ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, pp. 34–43.

Zaki, M.J., and Gouda, K. 2003. Fast vertical mining using Diffsets. In 9th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining, pp. 326–335.

Zaki, M.J., and Hsiao, C.-J. 2002. CHARM: An efficient algorithm for closed itemset mining. In 2nd SIAM
International Conference on Data Mining, pp. 457–473.

